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Background: Memorization   Generalization⟺
• [Memorization Generalization] SoTA large neural networks generalizes 

well, despite memorizing the training data. (Zhang et al., ‘17; Bartlett et al., ‘20; Kapalan et al., ‘20)
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• [Generalization Memorization] More surprisingly, memorization can be 
necessary for generalization. (Feldman et al., ‘19; Feldman et al., ‘20; Chen et al., ‘20)
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Computationally intractable to distinguish 
outliers and rare examples.
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• Question: Explicit memorization for generalization?

Computationally intractable to distinguish 
outliers and rare examples.

• [Generalization Memorization] More surprisingly, memorization can be 
necessary for generalization. (Feldman et al., ‘19; Feldman et al., ‘20; Chen et al., ‘20)
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ResMem: residual memorization

Residuals

Features

• [Step 1]  Train a neural network   as usual. fDeepNet

• [Step 2]  Compute the residuals. For classification,

.ri = onehot(yi) − softmax (fDeepNet(xi))



ResMem: residual memorization

• [Step 3] Memorize residuals using a -NN


     where  is computed from the 

     intermediate layer of the neural network.

k

wi ∼ −∥ϕ(x̃)−ϕ(xi)∥
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Residuals

Embedding

rkNN

• [Step 1]  Train a neural network   as usual. fDeepNet

.ri = onehot(yi) − softmax (fDeepNet(xi))
• [Step 2]  Compute the residuals. For classification,

 ,rkNN(x̃) = ∑
i

ri ⋅ wi

• [Step 3] Memorize residuals using a -NN


     where  is computed from the 

     intermediate layer of the neural network.

k

wi ∼ −∥ϕ(x̃)−ϕ(xi)∥



ResMem: residual memorization

ResMem prediction = fDeepNet + rkNN
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Empirical results: simple CIFAR experiment

Dataset Architecture
Test accuracy

DeepNet ResMem Gain

CIFAR100 ResNet-8 56.46% 59.66% 3.20%
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When does ResMem help?

• When the training sample is large, ResMem is particularly effective.



When does ResMem help?

• When the training sample is large, ResMem is particularly effective.

• SOTA LLMs are typically trained for at most a single epoch. (Google’s PaLM ‘22)



ResMem on languges models

x1, x2, …, xk

• Architecture: Decoder Only T5 (Raffel et al. ‘20). y

• Residual: .onehot(xk+1) − y

• Embedding: Post-attention, pre-feed forward .zk

• Dataset: C4 (text scrapped from internet).

• Nearest neighbor: ScaNN (Guo et al. ’20) for search over 1.6B tokens.

z1, z2, …, zk



Empirical results: an overview

Dataset Architecture
Test accuracy

DeepNet ResMem Gain

CIFAR100 ResNet-8 56.46% 59.66% 3.20%

C4 T5-Small 38.01% 40.87% 2.86%

C4 T5-Large 44.80% 46.60% 1.80%



Where does the improved accuracy come from?

...allow for plenty of headroom 
inside whilst still being less than 
2.5m in height.rose poppy

cup plate 
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Graphic now consists of all cities 
with greater than 30,000 locals. 
Acquiring a home in Spain…

Filmed around 7:30-8:30 a.m. on 
Friday, March 9, 2012.
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•  learns some coarse structures.          (the flowers)


•  memorizes the fine-grained details.   (the roses)
yDeepNet

yResMem



Theoretical analysis: linear regression

min ∥ ∥2−

• Why don’t we memorize the labels  directly?y
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X ∈ ℝn×d

•  is the usual design matrix with row  some distribution.X ∈ ℝn×d xi
i.i.d.∼
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min ∥ ∥2−

X ∈ ℝn×d

y θ

θn =

•  is the usual design matrix with row  some distribution.X ∈ ℝn×d xi
i.i.d.∼

•  is generated by some true  with  = 1y = Xθ⋆ θ⋆ ∥θ⋆∥

• Empirical risk minimization performed over the functions class

∥θ∥ < L

ℱ = {x ↦ ⟨x, θ⟩,∥θ∥ < L}, L < 1

Theoretical analysis: assumptions



Theoretical analysis: results
 Main theoretical result

  Test Risk of ResMem ≲ d2L2n−2/3 + d2(1 − L)2[
log (n1/d)

n ]
1/d

parametric rate from linear regression

 as ⟶ 0 n → ∞

[Theorem 5.3, Yang et al., ‘23]

stays as a irreducible error without ResMem
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  Test Risk of ResMem ≲ d2L2n−2/3 + d2(1 − L)2[
log (n1/d)

n ]
1/d

parametric rate from linear regression

 as ⟶ 0 n → ∞

stays as a irreducible error without ResMem

• The nearest neighbors component expands the capacity of the linear 
regressor by adding a non parametric component.

• If we memorize the labels  directly, we end up with a slow rate of  .y n−1/d

[Theorem 5.3, Yang et al., ‘23]



Learn the flowers, remember the roses.


