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Abstract—This paper considers the problem of learning a complete
(orthogonal) dictionary from sparsely generated sample signals. Unlike
conventional methods that minimize `1 norm to exploit sparsity and
learns the dictionary one column at a time, we propose instead to
maximize `4 norm to learn the entire dictionary over the orthogonal
group in a holistic fashion. We give a conceptually simple and yet
effective algorithm based on matching, stretching, and projection (MSP).
To justify the proposed formulation and algorithm, we study the expected
behaviors of the optimization problem based on measure concentration
and characterize statistically the required sample size. We also give a
proof for the local convergence of the proposed MSP algorithm, as well
as its superlinear (cubic) convergence rate. Experiments show that the
new algorithm is significantly more efficient and effective than existing
methods, including KSVD and `1-based methods. Through extensive
experiments, we also show that, somewhat remarkably, maximizing `4

norm with the proposed algorithm recovers the correct dictionary under
very broad conditions, well beyond current theoretical bounds.

I. INTRODUCTION

A. Formulation and Motivations

In this work, we consider the problem of learning a complete
dictionary from sparsely generated sample signals. To be more
precise, an n-dimensional sample y ∈ Rn is assumed to be a sparse
superposition of columns of a complete dictionary1 Do ∈ Rn×n:
y = Dox, where x ∈ Rn is a sparse (coefficient) vector. A typical
statistical model for the sparse coefficient is that entries of x are iid
Bernoulli Gaussian {xi} ∼iid BG(θ)2 [2], [14], [15].

Suppose we are given a collection of sample signals Y =
[y1,y2, . . . ,yp] ∈ Rn×p, each of which is generated as yi = Doxi.
Write Xo = [x1,x2, . . . ,xp] ∈ Rn×p. In this notation,

Y = DoXo. (I.1)

Dictionary learning is the problem of recovering both the dictionary
Do and the sparse coefficients Xo, given only the samples Y .
Equivalently, we wish to factorize Y as Y = DX , where D
is an estimate of the true dictionary Do and X is sparse. Under
our probabilistic hypotheses, the problem of learning a general
complete dictionary can be reduced to that of learning an orthogonal
dictionary3, and so we assume without loss of generality that Do is
an orthogonal matrix: Do ∈ O(n;R).

Because Y is sparsely generated, the optimal estimate D? should
make the associated coefficients X? maximally sparse. In other

1In this work, we only consider the case the dictionary is complete. See,
e.g., [3], [11] for applications of complete / orthogonal dictionary learning.
The more general setting in which the dictionary Do is overcomplete is
beyond the scope of this paper.

2I.e., each entry xi is a product of independent Bernoulli and standard
normal random variables: xi = ΩiVi, where Ωi ∼iid Ber(θ) and Vi ∼iid
N (0, 1).

3As shown in [15], the general case when the dictionary Do is not
orthogonal, the problem can be converted to the orthogonal case through a
preconditioning: Y ←

(
1
pθ

Y Y ∗
)− 1

2 Y .

words, `0-norm4 of X? should be as small as possible:

min
X,D
‖X‖0 , subject to Y = DX, D ∈ O(n;R). (I.2)

Under fairly mild conditions, globally minimizing the `0 norm
recovers the true dictionary Do [14]. But such global minimization
of the `0 norm is challenging. Typically, as in the K-SVD algorithm
[1], [13], one resorts to local heuristics such as orthogonal matching
pursuit.5 This approach has been widely practiced but is challenging
to give guarantees. We will compare these algorithms with ours.

1) Methods based on minimizing `1 norm: Alternatively, a number
of works [2], [9], [10], [14], [15] have considered the `1 norm as a
convex and continuous relaxation of `0 and solved variants of the
following problem instead:

min
X,D
‖X‖1 , subject to Y = DX, D ∈ O(n;R). (I.3)

Although `1-minimization has been widely practiced in dictionary
learning, rigorous justification for its global optimality and correct-
ness was only recently given in [15]. That work is based on the
observation that, for a complete dictionary learning Y = DX , rows
of Y and X span the same subspace: row (X) = row (Y ) . Hence,
if d is a column of D, then d∗Y would correspond to a row6 of X ,
therefore highly sparse. Under certain conditions7, one can correctly
recover each of the n columns of Do by minimizing the `1 norm of
d∗Y over a sphere:

min
d∈Rn

‖d∗Y ‖1 , subject to ‖d‖22 = 1. (I.4)

Although [15] provides theoretical guarantees for the complete dictio-
nary learning problem, it requires to solve n optimization programs
of the kind (I.4) to find all n columns di of the desired dictionary
D. We will compare the latest algorithm [2] with ours.

2) Methods based on higher order norms or statistics: Our initial
motivation for this work is to seek an alternative sparsity-promoting
objective function that is smooth and more amenable to learning
the entire dictionary in a holistic fashion over the orthogonal group
O(n;R). An observation comes from the fact that over the sphere
Sn−1 .

= {x ∈ Rn | ‖x‖2 = 1}:

arg max
x∈Sn−1

‖x‖44 = arg min
x∈Sn−1

‖x‖0 . (I.5)

That is, global maxima of the `4 norm over the sphere are the same as
minima of `0. Therefore, instead of using `1 norm in (I.4), we could
promote the sparsity of d∗Y by considering the following program:

max
d∈Rn

‖d∗Y ‖44 , subject to ‖d‖22 = 1. (I.6)

4The number of non-zero entries
5See also [12] for algorithms for learning orthogonal sparsifying transfor-

mations.
6In this paper, we use d∗ or D∗ to denote (conjugate) transpose of a vector

or a matrix.
7Say under the Bernoulli Gaussian sparse model and with p ≥

O(n5 log4(n)) samples



Unlike `0 or `1, the `4 norm is smooth so there is no reason to
solve (I.6) n times separately. We can directly maximize the sum
of `4 norms of all rows of D∗Y altogether8 while enforcing the
orthogonality constraint on D:

max
D
‖D∗Y ‖44 , subject to D ∈ O(n;R). (I.7)

We should note that 4th order statistical cumulant has been widely
used in blind source separation or independent component analysis
(ICA) since the 90’s, see [7], [8] and references therein. So if x
are n independent components, by finding extrema of the so-called
kurtosis: kurt(d∗y)

.
= E[(d∗y)4] − 3E[(d∗y)2]2, one can identify

one independent (non-Gaussian) component xi at a time. Algorithm
wise, this is similar to using the `1 minimization (I.4) to identify one
column di at a time for D. Fast fixed-point like algorithms have been
developed for this purpose [7], [8]. If x are indeed i.i.d. Bernoulli
Gaussian, with ‖d‖22 = 1, the second term in kurt(d∗y) would
become a constant. The objective of ICA coincides with maximizing
the sparsity-promoting `4 norm over a sphere (I.6).

The use of `4 norm can also be justified from the perspective of
sum of squares (SOS). The work of [4] shows that in theory, when
x is sufficiently sparse, one can utilize properties of higher order
sum of squares polynomials (such as the fourth order polynomials)
to correctly recover D, again one column di at a time.

In this work, we show, however, that all the columns di of D
should be learned together by solving the program (I.7) in a holistic
fashion so that additional orthogonality constraints among all columns
d∗idj = δij can be exploited together. As we will see, this leads to a
simple algorithm which is far more efficient than existing algorithms,
with working conditions well beyond those given by the theory of
SOS [4] or `1 minimization [15], at least for the complete case.

Remark 1.1 (Maximizing `2k norm): Conceptually, to promote
sparsity, one could also consider maximizing `2k norm9 of D∗Y
for any k ≥ 2. Most analysis and results given in this paper would
extend to these general cases. Nevertheless, as we will discuss and
see, the case 2k = 4 strikes a good balance between sample size and
convergence rate.

B. When is the Problem Well Posed?

Notice that in the dictionary learning problem (I.1), there are some
intrinsic ambiguities regarding recovering Do in a holistic fashion:
given any signed permutation matrix P ∈ SP(n),10 we have:

Y = DoXo = DoPP ∗Xo,

where P ∗Xo is equally sparse as Xo. So we can only expect to
best recover the correct dictionary (and sparse coefficient) up to an
arbitrary signed permutation. Due to this ambiguity, we claim the
ground truth dictionary Do is successfully recovered, if any signed
permuted version DoP is found.

C. Main Results and Contributions

1) Statistical justification: Suppose that our signal matrix Y ∈
Rn×p is randomly generated from (I.1), we claim that the expected
behaviors of solving the following `4 norm maximization problem:

max
A
‖AY ‖44 , subject to A ∈ O(n;R), (I.8)

8meaning the sum of 4th powers of all entries of a matrix: ∀A ∈
Rn×m ‖A‖44 =

∑
i,j a

4
i,j .

9The “`2k norm” of a matrix is the sum of 2kth power of all of its entries:
∀A ∈ Rn×m ‖A‖2k2k =

∑
i,j a

2k
i,j .

10SP(n) here denotes the group of signed permutation matrices, more
specifically, orthogonal matrices only contain 0,±1.

are largely characterized by the following (deterministic) program:

max
A
‖ADo‖44 , subject to A ∈ O(n;R), (I.9)

whose global optima are D∗o up to arbitrary signed permutations
(that is, A? shall satisfy A?Do ∈ SP(n)). We provide some simple
statistical conditions and justifications why this is the case.

2) A holistic fast optimization algorithm: Unlike almost all previ-
ous algorithms that find the dictionary one column di at a time,
we introduce a novel matching, stretching, and projection (MSP)
algorithm that solves the programs (I.8) and (I.9) directly for the
entire D ∈ O(n;R). The algorithm exploits the statistics of `4 and
global geometry of O(n;R) to achieve a cubic convergence rate.
Extensive experiments show that the algorithm is far more efficient
than existing heuristic or (Riemannian) gradient or subgradient based
algorithms. With this efficient algorithm, we characterize the range of
success for the program (I.8), which goes well beyond any existing
theoretical guarantees [4], [15] for the complete dictionary case.

D. Notations

We use a bold uppercase and lowercase letters to denote matrices
and vectors respectively: X ∈ Rn×p,x ∈ Rn. We reserve small
letter for scalar: x ∈ R. We use ‖X‖4 to denote the element-wise `4

norm of matrix X . We use Do to denote the ground truth dictionary,
and A is an estimate for D∗o from solving (I.8). We use ◦ to denote
the Hadamard product: ∀A,B ∈ Rn×m, {A ◦B}i,j = ai,jbi,j , and
{A◦r}i,j = ari,j is the element-wise rth power of A.

Given an input data matrix Y randomly generated from (I.1), for
any orthogonal matrix A ∈ O(n;R), we define f̂ : O(n;R) ×
Rn×p 7→ R as the 4th power of `4 norm of AY :

f̂(A,Y )
.
= ‖AY ‖44 . (I.10)

We define f : O(n;R) 7→ R as the expectation of f̂ over Xo:

f(A)
.
= EXo [f̂(A,Y )] = EXo

[
‖AY ‖44

]
. (I.11)

For any orthogonal matrix A ∈ O(n;R), we define g : O(n;R) 7→ R
as 4th power of its `4 norm: g(A)

.
= ‖A‖44 .

E. Organization of the Paper

Rest of the paper is organized as follows. In Section II, we
characterize the global maximizers of (I.8) statistically via measure
concentration. In Section III-B, we describe the proposed MSP
algorithm, and in Section III-C, we characterize fixed points of the
algorithm and show its local convergence rate. Due to space limit,
we leave all proofs to the full version of the paper. Finally, in Section
IV, we conduct extensive experiments to show effectiveness and
efficiency of our method, by comparing with the state of the art.

II. STATISTICAL JUSTIFICATION

In this section, we provide some basic statistical justification for
why we would expect the program

max f̂(A,Y ) = ‖AY ‖44 , subject to A ∈ O(n;R) (II.1)

to recover the ground truth dictionary Do.
• Firstly, we will show that statistically the (random) function
f̂(A,Y ) concentrates on its expectation f(A) as p is poly-
nomial in n (Lemma 2.1).

• Secondly, the expectation f(A) is a linear function of
g(ADo) = ‖ADo‖44, and as result they have the same global
maxima (Lemma 2.2).

• Finally, we show that all global maxima of g(ADo) are signed
permutations of Do (Lemma 2.3).
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Lemma 2.1 (Concentration of f̂(A,Y )): ∀A ∈ O(n;R), ∀ε >
0, 1

np
f̂(A,Y ) has the following concentration bound to its expecta-

tion 1
np
f(A):

P

(∣∣∣∣∣ f̂(A,Y )

np
− f(A)

np

∣∣∣∣∣ > ε

)
≤ O

(n4θ4

pε2

)
. (II.2)

The proof is based on Chebyshev inequality and we leave the details
in the full version of the paper.

This indicates that the (random) function f̂(A,Y ) behaves like its
expectation f(A) as the sample size p increases. For this approxima-
tion to be good with high probability, the number of samples p only
need to be polynomial in n and 1/ε, or more precisely p > O(n4/ε2).

Due to concentration, to large extent, the properties of maximizing
f̂(A,Y ) can be studied through examining how the deterministic
function f(A) can be optimized:

max
A

f(A) = EXo

[
‖AY ‖44

]
, subject to A ∈ O(n;R). (II.3)

Lemma 2.2 (Properties of f(A)): ∀A ∈ O(n;R) and ∀θ ∈
(0, 1), f(A) has the following properties:

• 1
3pθ

f(A) = (1− θ)g(ADo) + θn.
• 1

3pθ
f(A) ≤ n, with equality holds if and only if ADo ∈ SP(n).

This lemma shows that f(A) and g(ADo) are linearly related
hence their global maxima are the same on O(n;R):

A = arg max
A∈O(n,R)

f(A) if and only if A = arg max
A∈O(n,R)

g(ADo).

Thus, maximizing f(A) is equivalent to the following optimization
problem:

max
A

g(ADo) = ‖ADo‖44 , subject to A ∈ O(n;R), (II.4)

Moreover, the extrema of g(·) on O(n;R) are well structured, the
following lemma makes this precise.

Lemma 2.3 (Extrema of `4 Norm on the Orthogonal Group): For
any A ∈ O(n;R), g(A) = ‖A‖44 ∈ [1, n], g(A) reaches maximal
value n if and only if A ∈ SP(n) and g(A) reaches minimum if
and only if A is a Hadamard matrix11.

This lemma implies that if A? is a maximum of g(ADo), i.e.
‖A?Do‖44 = n, then it differs from Do by a signed permutation.

The following lemma shows that when the `4 norm of an orthog-
onal matrix A is close to the maximum value n, it is also close to a
signed permutation matrix in Frobenius norm.

Lemma 2.4 (Extrema of `4 norm over the orthogonal group):
Suppose A is an orthogonal matrix: A ∈ O(n;R). For arbitrarily
small ε, if 1

n
‖A‖44 > 1− ε, then ∃P ∈ SP(n), such that

1

n
‖A− P ‖2F < C1nε. (II.5)

This result is useful whenever we try to evaluate how close a solution
from an algorithm is to the optimal one.

Remark 2.5 (Maximizing `2k norm): If one were to choose max-
imizing `2k norm to promoting sparsity, similar analysis of con-
centration bounds would reveal that for the same error bound, it
requires much larger number p of samples for the (random) objective
function f̂(A,Y ) to concentrate on its (deterministic) expectation
f(A). Experiments in Section IV-E corroborate with the findings.

11Note that there is no guarantee that Hadamard matrix exists ∀n ∈ N+,
[16] shows that Hadamard matrix exists for infinite many n.

III. MATCHING, STRETCHING, AND PROJECTION ALGORITHM

In this section, we introduce an algorithm, based on a simple
iterative matching, stretching, and projection (MSP) process, which
efficiently solves the two related programs (I.8) and (II.4).

A. Related Optimization Methods

Although (I.8) is everywhere smooth, the associated optimization
is non-trivial in several ways. First, one needs to deal with the signed
permutation ambiguity. The problem has combinatorially many global
maximizers. Furthermore, we are maximizing a convex function (or
minimizing a concave function) over a constraint set. So conventional
methods such as augmented Lagrangian barely works. This is because
the Lagrangian [6]: L(A,Λ)

.
= −‖AY ‖44 + 〈AA− I,Λ〉 will go

to negative infinity due to the concavity of the objective function
−‖AY ‖44. Notice that all of its global maximizers are on the
constraint set, an ideal iterative algorithm should converge to a
solution that exactly lies on constraint set O(n;R).

Another natural way to optimize (I.8) is to apply Riemannian
gradient (or projected gradient) type methods [5] on the group
O(n;R). One can take small gradient steps to ensure convergence.
Such methods converge at best with a linear rate (if the objective
function is strongly convex). Nevertheless, as we will see, due to
special global geometry of the problem, we can choose a very
large (even infinite!) step size and the process converges much more
rapidly.

B. `4 Maximization over O(n;R) via an MSP Algorithm

We now introduce the matching, stretching and projection (MSP)
algorithm to solve problems (I.8) and (II.4). Meanwhile, we also
provide analysis and justification why the proposed algorithm is
expected to work well.

a) The Deterministic Case: Since the dictionary learning opti-
mization problem (I.8) concentrates on the `4 norm maximization
problem (II.4) w.h.p., we first introduce our MSP algorithm for
solving (II.4):

max
A

g(ADo) = ‖ADo‖44 , subject to A ∈ O(n;R).

Algorithm 1 MSP for `4 Maximization over Orthogonal Group

1: Given any Do ∈ O(n,R). . Ground truth Do

2: Initialize: A0 ∈ O(n,R). . Initialize A0 for iteration
3: for t = 0, 1, ... do
4: ∂At = 4(AtDo)

◦3D∗o ; . ∇A ‖ADo‖44 = 4(ADo)
◦3D∗o

5: UΣV ∗ = svd(∂At);
6: At+1 = UV ∗; . Project A onto orthogonal group
7: end for
8: Output: At+1, ‖At+1Do‖44 /n.

Note that in the output we normalize ‖ADo‖44 by dividing n,
because the global maximum of ‖ADo‖44 is n and the output is
therefore normalized to 1. In Step 4 of the MSP algorithm, the
calculation of ∂At = 4(AtDo)

◦3D∗o does not require knowledge
of Do. It is merely the gradient of the objective function

∇Ag(ADo) = ∇A ‖ADo‖44 = 4(ADo)
◦3D∗o .

However, one shall not mistaken the MSP algorithm as a gradient
descent type algorithm. In fact, in Step 4, the scale of ∂At is very
large and the iterates are not incremental local updates. Due to the
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scale invariant of SVD12, one can even scale ∂At arbitrarily large
and the algorithm still converges!

As the name of the algorithm suggests, each iteration actually
performs a “matching, stretching, and projection” operation. It first
matches the current estimate At with the true Do. Then the element-
wise cubic function (·)◦3 stretches all entries of AtDo by promoting
the large ones and suppressing the small ones. ∂At is the correlation
between so “sparsified” pattern and the original basis D∗o , which
is then projected back onto the closest orthogonal matrix At+1 in
Frobenius norm.

Repeating this “matching, stretching, and projection” process,
AtDo is increasingly sparsified while ensuring the orthogonality
of At. Ideally the process will stop when AtDo becomes the
sparsest, that is, a signed permutation matrix. Since the iterative MSP
algorithm utilizes the global geometry of the orthogonal group and
acts more like the power iteration method or the fixed point algorithm
[8], our analysis will show that it achieves super-linear convergence.

b) The Random Case: For the original dictionary learning
problem (I.8):

max
A

f̂(A,Y ) = ‖AY ‖44 , subject to A ∈ O(n;R),

we could propose a similar “matching, stretching, and projection”
(MSP) algorithm:

Algorithm 2 MSP for `4 Maximization Based Dictionary Learning

1: Given: Y = DoXo ∈ Rn×p.. Do ∈ O(n,R),Xo ∼iid BG(θ)
2: Initialize: A0 ∈ O(n,R). . Initialize A0 for iteration
3: for t = 0, 1, ... do
4: ∂At = 4(AtY )◦3Y ∗; . ∇A ‖AY ‖44 = 4(AY )◦3Y ∗

5: UΣV ∗ = svd(∂At);
6: At+1 = UV ∗; . Project A onto orthogonal group
7: end for
8: Output: At+1, ‖At+1Y ‖44 /3npθ, ‖At+1Do‖44 /n.

Note that in the output we also normalize ‖AY ‖44 by dividing the
maximum of its expectation: 3npθ so that the optimal output value
would be around 1.

The same intuition of “matching, stretching, and projection” for
the deterministic case naturally carries over here. Here in Step
4, the estimate At is first matched with the observation Y . The
cubic function (·)◦3 re-scales the results and promotes entry-wise
sparsity of Xt = AtY accordingly. Again, here ∂At is the gradient
∇Af̂(A,Y ) of the objective function, but because of its large scale,
the algorithm is not performing gradient descent.

Although the data and the objective function are random here,
Lemma 3.1 below shows that ∇Af̂(A,Y ) concentrates on its
expectation when p increases. Theorem 3.2 further shows its linear
relationship with ∇Ag(ADo).

Lemma 3.1 (Concentration Bound of ∇Af̂(A,Y ) ): Under the
same assumption of A,Y as (I.1), ∇Af̂(A,Y ) concentrates to its
expectation with the following bound

P

(∥∥∥∥1

p
∇Af̂(A,Y )− 1

p
EXo

[
∇Af̂(A,Y )

]∥∥∥∥2
F

> ε

)
≤ O

(n7θ4

pε

)
.

Theorem 3.2 (Expectation of ∇Af̂(A,Y )): With Y defined as
(I.1), the expectation of ∇Af̂(A,Y ) satisfies:

EXo∇Af̂(A,Y ) = 3pθ(1− θ)∇Ag(ADo) + 12pθ2A. (III.1)

12∀A ∈ Rn×n, α > 0, the rotation matrices U ,V from its SVD is the
same as the U ,V of αA.

Notice that the second term of (III.1) can be viewed as an offset
between the expected gradient and the gradient of g(ADo) at A.
When θ is small (i.e. Xo sufficiently sparse), the expected gradient
of f̂(A,Y ) aligns well with that of g(ADo).

With these results, the direction of EXo

[
∇Af̂(A,Y )

]
is a linear

combination of ∇Ag(ADo) and A. So we expect the stretching
∂At = 4(AtY )◦3Y ∗ in Step 4 of Algorithm 2 also promotes
the sparsity of AtDo w.h.p., as long as θ ∈ (0, 1). Moreover,
the stretching direction of ∇Af̂(A,Y ) approximates ∇Ag(ADo)
better with smaller θ (sparser Xo), which suggests that the learning
algorithm is more likely to succeed with sparser Xo, as will be
verified by the experiments.

C. Convergence Analysis of the MSP Algorithm

In this section, we provide convergence analysis of the proposed
MSP Algorithm 1 over the orthogonal group. Notice that the objective
function g(·) is invariant over O(n;R). So without loss of generality,
we only need to provide convergence analysis for the case Do = I .

When Do = I , we want to show the MSP algorithm converges to
a signed permutation matrix for the optimization problem:

max
A

g(A) = ‖A‖44 , subject to A ∈ O(n;R),

starting from any initial A0 on O(n;R). For this purpose, we first
introduce some basic properties of our objective function g(·). It is
easy to show that all critical points W ∈ Rn×n of ‖W ‖44 on the
manifold O(n;R) satisfy the following condition:

(W ◦3)∗W = W ∗W ◦3. (III.2)

The following lemma shows that all real solutions of the algebraic
equations (III.2) are discrete.

Lemma 3.3 (Discreteness of Critical Points): The set of critical
points of `4 norm over O(n;R) is discrete. That is, solutions to the
algebraic equations:

(W ◦3)∗W = W ∗W ◦3, W ∗W = I, (III.3)

are discrete.
One can also give good bounds on the number of critical points
using tools from algebraic geometry such as Bézout’s theorem [17].
For now we have the following relation between fixed points of the
MSP Algorithm 1 (when Do = I) and the critical points of g(·):

Lemma 3.4 (Fixed Points of MSP): ∀W ∈ O(n;R), W is a fix
point of the MSP algorithm if only if W is a critical point of the `4

norm over O(n;R).
Although the function g(W ) = ‖W ‖44 may have many critical

points, the signed permutation group SP(n) are the only global
maximizers. As recent work has shown [15], such discrete symmetry
helps regulate the global landscape of the objective function and
makes it amenable to global optimization. Indeed, we have observed
through our extensive experiments that, under broad conditions, the
proposed MSP algorithm always converges to the globally optimal
solution (set), at a super-linear convergence rate.

In this paper, we give a local result on the convergence of the MSP
algorithm.13 That is, when the initial orthogonal matrix A is “close”
enough to a signed permutation matrix, the MSP algorithm converges
to that signed permutation at a very fast rate. It is easy to verify the
algorithm is permutation invariant. Hence w.l.o.g., we may assume
the target signed permutation is the identity I .

13We leave the study of ensuring global optimality and convergence to
future work.
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Theorem 3.5 (Local Convergence Rate of the MSP Algorithm):
Given A ∈ O(n;R), if ‖A− I‖2F = ε, and let A′ denote the
output of the MSP Algorithm 1 after one iteration: A′ = UV ∗,
where UΣV ∗ = svd(A◦3), then ‖A′ − I‖2F ≤ O(ε3).

Theorem 3.5 shows that the MSP Algorithm 1 achieves cubic
convergence rate locally, which is much faster than any gradient
descent methods. Our experiments in Section IV confirm this super-
linear convergence rate for the MSP algorithms.

Remark 3.6 (Maximizing `2k norm): One can easily extend the
MSP algorithm to maximize `2k norm over the orthogonal group. In
fact, the resulting algorithm would have a higher rate of convergence
for the deterministic case, as the stretching with the power (·)◦2k−1

sparsifies the matrix more significantly with a larger k.14 See Section
IV-E for experimental verification. However, as we discussed in the
previous section, for the random case, the number of samples required
would increase drastically. Also see Section IV-E for experiments.
The choice of 2k = 4 seems to be the best in terms of balancing
these two contending factors.

IV. EXPERIMENTS

In this section, we first compare our algorithm with the clas-
sic heuristic KSVD algorithm [1] and the latest provably correct
dictionary learning method [2] based on minimizing `1 norm via
subgradient. We conduct additional experiments to reveal surprising
performance and working ranges of the MSP algorithm, well beyond
our current analysis.

A. Comparison with Prior Work
Table I below compares the MSP method with the KSVD [1] and

the latest subgradient method [2] for different choices of n, p under
the same sparsity level θ = 0.3. As one may see, our algorithm is
significantly faster than both algorithms in all trails. Further more,
our algorithm has the potential for large scale experiments: it only
takes 374.2 seconds to learn a 400× 400 dictionaries from 160, 000
samples. While the previous algorithms either fail to find the correct
dictionary or barely applicable. Within statistical errors, our algorithm
gives slightly smaller values for ‖ADo‖44 /n in some trails. But
the subgradient method [2] uses information of the ground truth
dictionary Do in their stopping criteria. Our MSP algorithm removes
this dependency with only mild loss in accuracy.

KSVD [1] Subgradient [2] MSP (Ours)
Trails Error Time Error Time Error Time

(a) 12.35% 51.2s 0.27% 35.6s 0.34% 0.4s
(b) 8.63% 244.4s 0.28% 354.9s 0.34% 1.5s
(c) 6.15% 684.9s 1.28% 6924.6s 0.35% 7.6s
(d) 8.61% 1042.3s N/A > 12h 0.35% 48.0s
(e) 13.07% 5401.9s N/A > 12h 0.35% 374.2s

Table I: Comparison experiments with [1], [2] in different trails of
dictionary learning: (a) n = 25, p = 1 × 104, θ = 0.3; (b) n =

50, p = 2 × 104, θ = 0.3; (c) n = 100, p = 4 × 104, θ = 0.3; (d)
n = 200, p = 4×104, θ = 0.3; (e) n = 400, p = 16×104, θ = 0.3. Y is
generated from (I.1). Recovery error is measured as

∣∣1 − ‖ADo‖44 /n
∣∣,

since Lemma 2.3 shows that a perfect recovery gives ‖ADo‖44 /n = 1.
All experiments are conducted on a 2.7 GHz Intel Core i5 processor
(CPU of a 13-inch Mac Pro 2015).

B. Dictionary Learning Convergence Rate Plot

Figure 1(a) presents one trial of the proposed MSP Algorithm 2
for dictionary learning with θ = 0.3, n = 100, and p = 40, 000. The

14In fact, one can show that if 2k →∞, the corresponding MSP algorithm
converges with only one iteration for the deterministic case!

result corroborates with statements in Lemma 2.1 and Lemma 2.2:
maximizing f̂(A,Y ) is largely equivalent to optimizing g(ADo),
and both values reach global maximum at the same time. Meanwhile,
this result also shows our MSP algorithm is able to find the global
maximum at ease, since g(ADo) reaches its maximal value 1 (with
minor errors) by maximizing f̂(A,Y ). In Figure 1(b), we test the
MSP Algorithm 2 in higher dimension n = 400, p = 1.6× 105, θ =
0.3. In both cases, our algorithm is surprisingly efficient: it only takes
around 20 iterations to recover a 100-dimensional dictionary and 50
iterations for a 400-dimensional dictionary.

(a) n = 100, p = 40, 000, θ = 0.3 (b) n = 400, p = 1.6× 105, θ = 0.3

Fig. 1: Normalized objective value ‖ADo‖44 /3npθ and ‖AY ‖44 /n for
individual trails of the MSP Algorithm 2, with different parameters n, p, θ.
According to Lemma 2.3, g(ADo)/n reaches 1 indicates successful
recovery for Do. This experiment shows the MSP algorithm finds global
maxima of f̂(A,Y ) thus recovers the correct dictionary Do.

C. Multiple Trials of the MSP Algorithm for Dictionary Learning

In Figure 2, we run the MSP Algorithm 2 with n = 100, p =
40, 000, θ = 0.3 for 100 trails. Among all 100 trails, g(ADo)
achieve the global maximal value (within statistical errors) via
optimizing f̂(A,Y ) in less than 30 iterations. This experiment seems
to support a conjecture: within conditions of this experiment, the MSP
algorithm recovers the globally optimal dictionary.

(a) Plot with Initial Values (b) Plot without Initial Values

Fig. 2: Normalized initial and final objective values of ‖ADo‖44 /3npθ
and ‖AY ‖44 /n for 100 trails of the MSP Algorithm 2, with n = 100, p =

40, 000, θ = 0.3. Both f̂(A,Y ) and g(ADo) converge to 1 (with minor
errors) for all 100 trails.

D. Working Ranges of the MSP Algorithm

Encouraged by previous experiment, we conduct more extensive
experiments of the MSP Algorithm 2 in broader settings to find its
working range: 1) Figure 3 shows the result of varying the sparsity
level θ and sample size p with a fixed dimension n and 2) Figure 4
shows results of changing dimension n and sample size p at a fixed
sparsity level θ = 0.5. Notice that both figures demonstrate a clear
phase transition for the working range. It is somewhat surprising
to see in Figure 3 that the MSP algorithm is able to recover the
dictionary correctly up to the sparsity level of θ ≈ 0.6 if p is large
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Fig. 3: Phase transition plot of average normalized error |1−‖ADo‖44 /n|
among 10 trails of the MSP Algorithm 2 with n = 50, varying θ from
0 to 1, and p from 0 to 10,000. Red area indicates large error and blue
area small error.

enough, which almost doubles the best existing theoretical guarantee
given in [2], [15].

Figure 4(a) and (b) show the working range for varying n, p with
a fixed θ = 0.5. Figure 4(a) is for a smaller range of n (from 10 to
100) and Figure 4(b) for a larger range of n (from 100 to 1,000). It
can be seen from these figures that the required sample size p for
the algorithm to succeed seems to be quadratic in the dimension n:
p = O(n2). This empirical bound is significantly better than the best
theoretical bounds given in [2], [15] and our analysis, where at least
p = Ω(n4) samples are required to ensure success. Similar empirical
observations have been reported in [2], which together suggest better
analysis might be necessary to tighten the bounds.

(a) Changing n from 10 to 100 and p
from 1,000 to 10,000, θ = 0.5.

(b) Changing n from 100 to 1,000 and
p from 10,000 to 100,000, θ = 0.5.

Fig. 4: Phase transition of average normalized error |1 − ‖ADo‖44 /n|
of 10 trails for the MSP Algorithm 2 at θ = 0.5, varying n and p. Red
area indicates large error and blue area small error.

E. Generalization to `2k Norm

In Figure 5, we conduct experiments to support the choice of `4

norm. Figure 5(a) shows that for the deterministic case, the MSP
Algorithm 1 finds signed permutation matrices faster with higher
order `2k norm. But Figure 5(b) indicates that as the order 2k
increases, much more samples are needed by Algorithm 2 to achieve
the same estimation error: p grows drastically as k increases. Hence,
among all these sparsity-promoting norms (`2k), the `4 norm strikes
a good balance between sample size and convergence rate.

V. SUMMARY AND FUTURE WORK

Dictionary learning has become an increasingly important and
powerful tool in unsupervised learning for data analysis. In this paper,
we see that a complete sparsifying dictionary can be learned very
effectively in a holistic fashion by the simple MSP algorithm with
superlinear convergence rate. The new algorithm exploits higher (4th)
order statistics and the global structure of O(n;R). Its remarkable

(a) Convergence plots of the MSP
Algorithm 1 for the deterministic
case, with the same initialization.

(b) Average normalized error of MSP
Algorithm 2 among 20 trails, varying
k and p, with n = 10 fixed.

Fig. 5: Use different `2k norms for Algorithm 1 and Algorithm 2.

efficiency (in terms of sample size and computational complexity)
as well as its wide range of success suggests the problem merits
more refined theoretical analysis in the future. We would very much
like to explore if similar analysis and algorithms can be extended
to solving the cases of learning overcomplete dictionaries. We would
also like to make the learning algorithm robust to measurement noise
and outliers.
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