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Solution: Projection Norm

We propose a quantity named Projection Norm that help predict 

test error.



Solution: Projection Norm

We propose a quantity named Projection Norm that help predict 

test error.

Projection Norm for neural network.



Solution: Projection Norm

We propose a quantity named Projection Norm that help predict 

test error.

Projection Norm for neural network.

• Step 1: Use  (the model whose test accuracy we care about) to  pseudo 

label the test covariates of size .

̂θ
m

Pseudo-labeled            

test data of size mPseudo label using ̂θ



Solution: Projection Norm

We propose a quantity named Projection Norm that help predict 

test error.

Projection Norm for neural network.

• Step 1: Use  (the model whose test accuracy we care about) to  pseudo 

label the test covariates of size .

̂θ
m

Initialization  θ0

Pseudo-labeled            

test data of size mPseudo label using ̂θ θ̃

• Step 2: Starting from initialization  (e.g. pertained ResNet), train a new 

model   on the pseudo labeled test set from Step 1.

θ0

θ̃



Solution: Projection Norm

We propose a quantity named Projection Norm that help predict 

test error.

Projection Norm for neural network.

• Step 1: Use  (the model whose test accuracy we care about) to  pseudo 

label the test covariates of size .

̂θ
m

Initialization  θ0

Subsampled training 

data of size m

Pseudo-labeled            

test data of size mPseudo label using ̂θ

̂θref

θ̃

• Step 2: Starting from initialization  (e.g. pertained ResNet), train a new 

model   on the pseudo labeled test set from Step 1.

θ0

θ̃

• Step 3: Subsample  samples from the training set (original size = ), 

and train a reference model . Compute the norm of difference.

m n
̂θref



Solution: Projection Norm

We propose a quantity named Projection Norm that help predict 

test error.

Projection Norm for neural network.

• Step 1: Use  (the model whose test accuracy we care about) to  pseudo 

label the test covariates of size .

̂θ
m

Initialization  θ0

Subsampled training 

data of size m

Pseudo-labeled            

test data of size mPseudo label using ̂θ

̂θref

θ̃
̂θref − θ̃

2

• Step 2: Starting from initialization  (e.g. pertained ResNet), train a new 

model   on the pseudo labeled test set from Step 1.

θ0

θ̃

• Step 3: Subsample  samples from the training set (original size = ), 

and train a reference model . Compute the norm of difference.

m n
̂θref

Zitong Yang



Solution: Projection Norm

We propose a quantity named Projection Norm that help predict 

test error.

Projection Norm for neural network.

• Step 1: Use  (the model whose test accuracy we care about) to  pseudo 

label the test covariates of size .

̂θ
m

Initialization  θ0

Subsampled training 

data of size m

Pseudo-labeled            

test data of size mPseudo label using ̂θ

̂θref

θ̃
̂θref − θ̃

2
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• Agreement score (Madani et al., 2004) 

• Rotation prediction (Deng et al., 2021)

Some observations: 

• All methods tends to behave well when test error is small. 

• Projection Norm outperforms the other methods when test error is large.

Conclusion: Superiority comes from its ability to handle “hard” 

distribution shifts. We will latter present a synthetic example that further 

illustrates this empirical conclusion.



Experiments: quantitative comparison 

Two metrics considered: 

• : perform a simple linear regression using the 80 samples and 

compute the  statistics. 

• : Rank correlation between the vector of OOD test errors and the vector 

of Projection Norm.

R2

R2

ρ
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Synthetic linear regression: setup

Let’s consider a simplified overparameterized liner regression 

model to see the intuition behind the Projection Norm…

Problem formulation in the linear setting

We denote the training set by the matrix-vector pair  where 

. Similarly for the test set with .

(X, y)
X ∈ ℝn×d, y ∈ ℝn X̃ ∈ ℝm×d, ỹ ∈ ℝm
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2

̂θ = min
Xθ=y

∥θ∥2 = X⊤(XX⊤)−1y = X⊤(XX⊤)−1X θ⋆ Pθ⋆

• If the training and test set are perfect aligned, i.e. , the test 

loss would be just .

row(X) = row( X̃ )
0



Synthetic linear regression: intuition

Two  observations: 

• From the training set, we only learned the portion of  that is in the span of .θ⋆ X

Problem formulation in the linear setting

The problem is to estimate, without access to , the test loss 

 of the min-norm solution 

              =  .

ỹ
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In this case, we start from theoretical analysis on a toy model and 

end up with an algorithm works well on real architectures!
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Conclusion

We propose a quantity named Projection Norm that help predict 

test error that is almost better than every existing procedures!

It has three limitations that opens room for improvement: 

• Projection Norm requires the test set to be large enough to 

allow meaningful fine tuning, whereas methods such as 

confidence score only require one test sample

• Projection Norm can’t handle easy distribution shift very well.

• Projection Norm can’t handle prediction across dataset.



Thanks!


