

Predicting Out-of-distribution Error with the Projection Norm

Speaker: Zitong Yang*

Yaodong Yu*

Alex Wei

Yi Ma

Jacob Steinhardt

Given

- A prediction model $\hat{ heta}$ fitted on a training set

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n);$$

• Test covariates $\widetilde{x}_1, \widetilde{x}_2, ..., \widetilde{x}_m$,

Given

- A prediction model $\hat{m{ heta}}$ fitted on a training set

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n);$$

• Test covariates $\widetilde{\boldsymbol{x}}_1, \widetilde{\boldsymbol{x}}_2, ..., \widetilde{\boldsymbol{x}}_m$,

predict the prediction error on the test set

$$(\widetilde{\boldsymbol{x}}_1, \widetilde{\boldsymbol{y}}_1), (\widetilde{\boldsymbol{x}}_2, \widetilde{\boldsymbol{y}}_2), \dots, (\widetilde{\boldsymbol{x}}_m, \widetilde{\boldsymbol{y}}_m)$$

without having access to labels $\widetilde{y}_1, \widetilde{y}_2, ..., \widetilde{y}_m$.

Given

- A prediction model $\hat{m{ heta}}$ fitted on a training set

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n);$$

• Test covariates $\widetilde{x}_1,\widetilde{x}_2,...,\widetilde{x}_m$,

predict the prediction error on the test set

$$(\widetilde{x}_1, \widetilde{y}_1), (\widetilde{x}_2, \widetilde{y}_2), \dots, (\widetilde{x}_m, \widetilde{y}_m)$$

without having access to labels $\widetilde{y}_1, \widetilde{y}_2, ..., \widetilde{y}_m$.

Golden machine learning wisdom:

- Holdout validation set
- Cross validation
- •

Given

- A prediction model $\hat{m{ heta}}$ fitted on a training set

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n);$$

• Test covariates $\widetilde{x}_1,\widetilde{x}_2,...,\widetilde{x}_m$,

predict the prediction error on the test set

$$(\widetilde{x}_1, \widetilde{y}_1), (\widetilde{x}_2, \widetilde{y}_2), \dots, (\widetilde{x}_m, \widetilde{y}_m)$$

without having access to labels $\widetilde{y}_1, \widetilde{y}_2, ..., \widetilde{y}_m$.

Golde chine ing wisdom:

- Holdou.
 Jon set
- · Crost da

•

Test time distribution shift

We propose a quantity named Projection Norm that help predict test error.

We propose a quantity named Projection Norm that help predict test error.

We propose a quantity named Projection Norm that help predict test error.

Projection Norm for neural network.

• Step 1: Use $\hat{\theta}$ (the model whose test accuracy we care about) to pseudo label the test covariates of size m.

We propose a quantity named Projection Norm that help predict test error.

Projection Norm for neural network.

- Step 1: Use $\hat{\theta}$ (the model whose test accuracy we care about) to pseudo label the test covariates of size m.
- Step 2: Starting from initialization $m{ heta}_0$ (e.g. pertained ResNet), train a new model $\stackrel{\sim}{m{ heta}}$ on the pseudo labeled test set from Step 1.

We propose a quantity named Projection Norm that help predict test error.

- Step 1: Use $\hat{\theta}$ (the model whose test accuracy we care about) to pseudo label the test covariates of size m.
- Step 2: Starting from initialization $m{ heta}_0$ (e.g. pertained ResNet), train a new model $\stackrel{\sim}{m{ heta}}$ on the pseudo labeled test set from Step 1.
- Step 3: Subsample m samples from the training set (original size = n), and train a reference model $\hat{\theta}_{ref}$. Compute the norm of difference.

We propose a quantity named Projection Norm that help predict test error.

Projection Norm for neural network.

- Step 1: Use $\hat{\theta}$ (the model whose test accuracy we care about) to pseudo label the test covariates of size m.
- Step 2: Starting from initialization $m{ heta}_0$ (e.g. pertained ResNet), train a new model $\stackrel{\sim}{m{ heta}}$ on the pseudo labeled test set from Step 1.
- Step 3: Subsample m samples from the training set (original size = n), and train a reference model $\hat{\theta}_{ref}$. Compute the norm of difference.

We propose a quantity named Projection Norm that help predict test error.

Projection Norm for neural network.

- Step 1: Use $\hat{ heta}$ (the model whose test accuracy we care about) to pseudo label the test covariates of size m.
- Step 2: Starting from initialization $m{ heta}_0$ (e.g. pertained ResNet), train a new model $\stackrel{\sim}{ heta}$ on the pseudo labeled test set from Step 1.
- Step 3: Subsample m samples from the training set (original size = n), and train a reference model $\hat{\theta}_{ref}$. Compute the norm of difference.

Experiments

Mainline experiment: CIFAR100C ($16 \times 5 = 80$ corruptions) with ResNet50 pertained on ImageNet.

Experiments

Mainline experiment: CIFAR100C ($16 \times 5 = 80$ corruptions) with ResNet50 pertained on ImageNet.

We consider several baselines:

- · Confidence score (Hendrycks & Gimpel, 2016), ATC (Grag el al., 2022)
- Agreement score (Madani et al., 2004)
- Rotation prediction (Deng et al., 2021)

We consider several baselines:

- Confidence score (Hendrycks & Gimpel, 2016), ATC (Grag el al., 2022)
- Agreement score (Madani et al., 2004)
- Rotation prediction (Deng et al., 2021)

We consider several baselines:

- Confidence score (Hendrycks & Gimpel, 2016), ATC (Grag el al., 2022)
- Agreement score (Madani et al., 2004)
- Rotation prediction (Deng et al., 2021)

Some observations:

- All methods tends to behave well when test error is small.
- Projection Norm outperforms the other methods when test error is large.

We consider several baselines:

- · Confidence score (Hendrycks & Gimpel, 2016), ATC (Grag el al., 2022)
- Agreement score (Madani et al., 2004)
- Rotation prediction (Deng et al., 2021)

Some observations:

- · All methods tends to behave well when test error is small.
- Projection Norm outperforms the other methods when test error is large.

Conclusion: Superiority comes from its ability to handle "hard" distribution shifts. We will latter present a synthetic example that further illustrates this empirical conclusion.

Dataset	Network	Rotation		ConfScore		Entropy		AgreeScore		ATC		ProjNorm	
		R^2	ρ	R^2	ρ	R^2	ρ	R^2	ρ	R^2	ρ	R^2	ρ
CIFAR10	ResNet18 ResNet50 VGG11	0.839 0.784 0.826	0.953 0.950 0.876	0.847 0.935 0.929	0.981 0.993 0.988	0.872 0.946 0.927	0.983 0.994 0.989	0.556 0.739 0.907	0.871 0.961 0.989	0.860 0.949 0.931	0.983 0.994 0.989	0.962 0.951 0.891	0.992 0.991 0.991
	Average	0.816	0.926	0.904	0.987	0.915	0.989	0.734	0.940	0.913	0.989	0.935	0.991
CIFAR100	ResNet18 ResNet50 VGG11	0.903 0.916 0.780	0.955 0.963 0.945	0.917 0.932 0.899	0.958 0.986 0.981	0.879 0.905 0.880	0.938 0.980 0.979	0.939 0.927 0.919	0.969 0.985 0.988	0.934 0.947 0.935	0.966 0.989 0.986	0.978 0.984 0.953	0.989 0.993 0.993
	Average	0.866	0.954	0.916	0.975	0.888	0.966	0.928	0.981	0.939	0.980	0.972	0.992
MNLI	BERT RoBERTa	-	-	0.516 0.493	0.671 0.727	0.533 0.498	0.734 0.734	0.318 0.499	0.524 0.762	0.524 0.519	0.699 0.734	0.585 0.621	0.664 0.790
	Average	-	-	0.505	0.699	0.516	0.734	0.409	0.643	0.522	0.717	0.603	0.727

Two metrics considered:

- R^2 : perform a simple linear regression using the 80 samples and compute the R^2 statistics.
- ρ : Rank correlation between the vector of OOD test errors and the vector of Projection Norm.

Experiments: a statistical analysis

Let's consider a simplified overparameterized liner regression model to see the intuition behind the Projection Norm...

Let's consider a simplified overparameterized liner regression model to see the intuition behind the Projection Norm...

We denote the training set by the matrix-vector pair (X, y) where $X \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^n$. Similarly for the test set with $\widetilde{X} \in \mathbb{R}^{m \times d}, \widetilde{y} \in \mathbb{R}^m$.

Let's consider a simplified overparameterized liner regression model to see the intuition behind the Projection Norm...

We denote the training set by the matrix-vector pair (X, y) where $X \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^n$. Similarly for the test set with $\widetilde{X} \in \mathbb{R}^{m \times d}, \widetilde{y} \in \mathbb{R}^m$.

Assumptions: covaraite shift

We assume d>n, and that there exists a ground truth θ_{\star} that defines the relation $y\,|\,x$ in a noiseless fashion:

$$X\theta_{\star} = y, \quad \widetilde{X}\theta_{\star} = \widetilde{y}.$$

Let's consider a simplified overparameterized liner regression model to see the intuition behind the Projection Norm...

We denote the training set by the matrix-vector pair (X, y) where $X \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^n$. Similarly for the test set with $X \in \mathbb{R}^{m \times d}, \widetilde{y} \in \mathbb{R}^m$.

Assumptions: covaraite shift

We assume d > n, and that there exists a ground truth θ_{\star} that defines the relation $y \mid x$ in a noiseless fashion:

$$X\theta_{\star} = y, \quad \widetilde{X}\theta_{\star} = \widetilde{y}.$$

Problem formulation in the linear setting

The problem is to estimate, without access to \widetilde{y} , the test loss

$$(1/m)\|\widetilde{X}\widehat{\theta} - \widetilde{y}\|_2^2$$
 of the min-norm solution

$$\hat{\boldsymbol{\theta}} = \min_{\boldsymbol{X}\boldsymbol{\theta} = \boldsymbol{y}} \|\boldsymbol{\theta}\|_2 = \boldsymbol{X}^{\top} (\boldsymbol{X}\boldsymbol{X}^{\top})^{-1} \boldsymbol{y} = \boldsymbol{X}^{\top} (\boldsymbol{X}\boldsymbol{X}^{\top})^{-1} \boldsymbol{X} \; \boldsymbol{\theta}_{\star} = \boldsymbol{P}\boldsymbol{\theta}_{\star} \; .$$

Let's consider a simplified overparameterized liner regression model to see the intuition behind the Projection Norm...

We denote the training set by the matrix-vector pair (X, y) where

 $X \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^n$. Similarly for the test set with $\widetilde{X} \in \mathbb{R}^{m \times d}, \widetilde{y} \in \mathbb{R}^m$.

Assumptions: covaraite shift

We assume d>n, and that there exists a ground truth θ_{\star} that defines the relation $y\,|\,x$ in a noiseless fashion:

$$X\theta_{\star} = y$$
, $\widetilde{X}\theta_{\star} = \widetilde{y}$.

Problem formulation in the linear setting

The problem is to estimate, without access to \widetilde{y} , the test loss

$$(1/m)\|\widetilde{X}\widehat{\theta} - \widetilde{y}\|_2^2$$
 of the min-norm solution

$$\hat{\boldsymbol{\theta}} = \min_{\boldsymbol{X}\boldsymbol{\theta} = \boldsymbol{y}} \|\boldsymbol{\theta}\|_2 = \boldsymbol{X}^{\top} (\boldsymbol{X}\boldsymbol{X}^{\top})^{-1} \boldsymbol{y} = \boldsymbol{X}^{\top} (\boldsymbol{X}\boldsymbol{X}^{\top})^{-1} \boldsymbol{X} \boldsymbol{\theta}_{\star} = \boldsymbol{P}\boldsymbol{\theta}_{\star}.$$

Problem formulation in the linear setting

The problem is to estimate, without access to \widetilde{y} , the test loss

$$(1/m)\|\widetilde{X}\widehat{\theta} - \widetilde{y}\|_2^2$$
 of the min-norm solution

$$\hat{\boldsymbol{\theta}} = \min_{\boldsymbol{X}\boldsymbol{\theta} = \boldsymbol{y}} \|\boldsymbol{\theta}\|_2 = \boldsymbol{X}^{\top} (\boldsymbol{X}\boldsymbol{X}^{\top})^{-1} \boldsymbol{y} = \boldsymbol{X}^{\top} (\boldsymbol{X}\boldsymbol{X}^{\top})^{-1} \boldsymbol{X} \boldsymbol{\theta}_{\star} = \boldsymbol{P}\boldsymbol{\theta}_{\star}.$$

Problem formulation in the linear setting

The problem is to estimate, without access to \widetilde{y} , the test loss

$$(1/m)\|\widetilde{X}\widehat{\theta} - \widetilde{y}\|_2^2$$
 of the min-norm solution

$$\hat{\boldsymbol{\theta}} = \min_{\boldsymbol{X}\boldsymbol{\theta} = \boldsymbol{y}} \|\boldsymbol{\theta}\|_2 = \boldsymbol{X}^{\top} (\boldsymbol{X}\boldsymbol{X}^{\top})^{-1} \boldsymbol{y} = \boldsymbol{X}^{\top} (\boldsymbol{X}\boldsymbol{X}^{\top})^{-1} \boldsymbol{X} \boldsymbol{\theta}_{\star} = \boldsymbol{P}\boldsymbol{\theta}_{\star}.$$

Two observations:

• From the training set, we only learned the portion of θ_{\star} that is in the span of X.

Problem formulation in the linear setting

The problem is to estimate, without access to \widetilde{y} , the test loss

$$(1/m)\|\widetilde{X}\widehat{\theta} - \widetilde{y}\|_2^2$$
 of the min-norm solution

$$\hat{\boldsymbol{\theta}} = \min_{\boldsymbol{X}\boldsymbol{\theta} = \boldsymbol{y}} \|\boldsymbol{\theta}\|_2 = \boldsymbol{X}^{\top} (\boldsymbol{X}\boldsymbol{X}^{\top})^{-1} \boldsymbol{y} = \boldsymbol{X}^{\top} (\boldsymbol{X}\boldsymbol{X}^{\top})^{-1} \boldsymbol{X} \boldsymbol{\theta}_{\star} = \boldsymbol{P}\boldsymbol{\theta}_{\star}.$$

Two observations:

- From the training set, we only learned the portion of $heta_\star$ that is in the span of X.
- If the training and test set are perfect aligned, i.e. row(X) = row(X), the test loss would be just 0.

Problem formulation in the linear setting

The problem is to estimate, without access to \widetilde{y} , the test loss

$$(1/m)\|\widetilde{X}\widehat{\theta} - \widetilde{y}\|_2^2$$
 of the min-norm solution

$$\hat{\boldsymbol{\theta}} = \min_{\boldsymbol{X}\boldsymbol{\theta} = \boldsymbol{y}} \|\boldsymbol{\theta}\|_2 = \boldsymbol{X}^{\top} (\boldsymbol{X}\boldsymbol{X}^{\top})^{-1} \boldsymbol{y} = \boldsymbol{X}^{\top} (\boldsymbol{X}\boldsymbol{X}^{\top})^{-1} \boldsymbol{X} \boldsymbol{\theta}_{\star} = \boldsymbol{P}\boldsymbol{\theta}_{\star}.$$

Two observations:

- From the training set, we only learned the portion of $heta_\star$ that is in the span of X.
- If the training and test set are perfect aligned, i.e. row(X) = row(X), the test loss would be just 0.

Projection norm for linear regression

Therefore the non-zero test error stems from the portion of $heta_{\star}$ that is

in row(X) but not in row(X). This quantity is intuitively measured by

$$\|(\boldsymbol{I} - \widetilde{\boldsymbol{P}})\boldsymbol{P}\boldsymbol{\theta}_{\star}\|_{2}$$

Problem formulation in the linear setting

The problem is to estimate, without access to \widetilde{y} , the test loss

$$(1/m)\|\widetilde{X}\widehat{\theta} - \widetilde{y}\|_2^2$$
 of the min-norm solution

$$\hat{\boldsymbol{\theta}} = \min_{\boldsymbol{X}\boldsymbol{\theta} = \boldsymbol{y}} \|\boldsymbol{\theta}\|_2 = \boldsymbol{X}^{\top} (\boldsymbol{X}\boldsymbol{X}^{\top})^{-1} \boldsymbol{y} = \boldsymbol{X}^{\top} (\boldsymbol{X}\boldsymbol{X}^{\top})^{-1} \boldsymbol{X} \boldsymbol{\theta}_{\star} = \boldsymbol{P}\boldsymbol{\theta}_{\star}.$$

Two observations:

- From the training set, we only learned the portion of θ_{\star} that is in the span of X.
- If the training and test set are perfect aligned, i.e. row(X) = row(X), the test loss would be just 0.

Projection norm for linear regression

Therefore the non-zero test error stems from the portion of $heta_{\star}$ that is

in row(X) but not in row(X). This quantity is intuitively measured by

$$\|(\boldsymbol{I} - \widetilde{\boldsymbol{P}})\boldsymbol{P}\boldsymbol{\theta}_{\star}\|_{2} \quad \widetilde{\boldsymbol{X}}^{\top}(\widetilde{\boldsymbol{X}}\widetilde{\boldsymbol{X}}^{\top})^{-1}\widetilde{\boldsymbol{X}}$$

Question: How does $||(I - \widetilde{P})P\theta_{\star}||_2$ relates to the Projection Norm for neural network that is introduced earlier?

Question: How does $||(I - \widetilde{P})P\theta_{\star}||_2$ relates to the Projection Norm for neural network that is introduced earlier?

$$\|(\boldsymbol{I} - \widetilde{\boldsymbol{P}})\boldsymbol{P}\boldsymbol{\theta}_{\star}\|_{2} = \|\hat{\boldsymbol{\theta}} - \widetilde{\boldsymbol{P}}\hat{\boldsymbol{\theta}}\|_{2}$$

Question: How does $||(I - \widetilde{P})P\theta_{\star}||_2$ relates to the Projection Norm for neural network that is introduced earlier?

$$\|(\boldsymbol{I} - \widetilde{\boldsymbol{P}})\boldsymbol{P}\boldsymbol{\theta}_{\star}\|_{2} = \|\hat{\boldsymbol{\theta}} - \widetilde{\boldsymbol{P}}\hat{\boldsymbol{\theta}}\|_{2}$$

A nonlinear projection

Question: How does $||(I - \widetilde{P})P\theta_{\star}||_2$ relates to the Projection Norm for neural network that is introduced earlier?

$$\|(\boldsymbol{I} - \widetilde{\boldsymbol{P}})\boldsymbol{P}\boldsymbol{\theta}_{\star}\|_{2} = \|\hat{\boldsymbol{\theta}} - \widetilde{\boldsymbol{P}}\hat{\boldsymbol{\theta}}\|_{2}$$

A nonlinear projection

The quantity $P\hat{\theta}$ can be regarded as the minimum norm solution to

$$\min_{\boldsymbol{\theta}} \|\widetilde{\boldsymbol{X}}\boldsymbol{\theta} - \widetilde{\boldsymbol{X}}\hat{\boldsymbol{\theta}}\|_2.$$

Synthetic linear regression: intuition

Question: How does $||(I - P)P\theta_{\star}||_2$ relates to the Projection Norm for neural network that is introduced earlier?

$$\|(\boldsymbol{I} - \widetilde{\boldsymbol{P}})\boldsymbol{P}\boldsymbol{\theta}_{\star}\|_{2} = \|\hat{\boldsymbol{\theta}} - \widetilde{\boldsymbol{P}}\hat{\boldsymbol{\theta}}\|_{2}$$

A nonlinear projection

The quantity $P\hat{\theta}$ can be regarded as the minimum norm solution to

$$\min_{\boldsymbol{\theta}} \|\widetilde{\boldsymbol{X}}\boldsymbol{\theta} - \widetilde{\boldsymbol{X}}\hat{\boldsymbol{\theta}}\|_2.$$

Writing the optimization problem differently with $f(x; \theta) = \langle x, \theta \rangle$:

$$\min_{\boldsymbol{\theta}} \sum_{j=1}^{m} \left[f(\widetilde{\boldsymbol{x}}_{j}, \boldsymbol{\theta}) - f(\widetilde{\boldsymbol{x}}_{j}, \widehat{\boldsymbol{\theta}}) \right],$$

Synthetic linear regression: intuition

Question: How does $||(I - \widetilde{P})P\theta_{\star}||_2$ relates to the Projection Norm for neural network that is introduced earlier?

$$\|(\boldsymbol{I} - \widetilde{\boldsymbol{P}})\boldsymbol{P}\boldsymbol{\theta}_{\star}\|_{2} = \|\hat{\boldsymbol{\theta}} - \widetilde{\boldsymbol{P}}\hat{\boldsymbol{\theta}}\|_{2}$$

A nonlinear projection

The quantity $P\hat{\theta}$ can be regarded as the minimum norm solution to

$$\min_{\boldsymbol{\theta}} \|\widetilde{\boldsymbol{X}}\boldsymbol{\theta} - \widetilde{\boldsymbol{X}}\hat{\boldsymbol{\theta}}\|_2.$$

Writing the optimization problem differently with $f(x; \theta) = \langle x, \theta \rangle$:

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{m} \left[f(\widetilde{\boldsymbol{x}}_{j}, \boldsymbol{\theta}) - f(\widetilde{\boldsymbol{x}}_{j}, \hat{\boldsymbol{\theta}}) \right],$$

where $f(\widetilde{\boldsymbol{x}}_i, \widehat{\boldsymbol{\theta}})$ is exactly the pseudo-labels mentioned earlier.

Synthetic linear regression: intuition

Question: How does $||(I - \widetilde{P})P\theta_{\star}||_2$ relates to the Projection Norm for neural network that is introduced earlier?

$$\|(\boldsymbol{I} - \widetilde{\boldsymbol{P}})\boldsymbol{P}\boldsymbol{\theta}_{\star}\|_{2} = \|\hat{\boldsymbol{\theta}} - \widetilde{\boldsymbol{P}}\hat{\boldsymbol{\theta}}\|_{2}$$

A nonlinear projection

The quantity $P\hat{\theta}$ can be regarded as the minimum norm solution to

$$\min_{\boldsymbol{\theta}} \|\widetilde{\boldsymbol{X}}\boldsymbol{\theta} - \widetilde{\boldsymbol{X}}\hat{\boldsymbol{\theta}}\|_2.$$

Writing the optimization problem differently with $f(x; \theta) = \langle x, \theta \rangle$:

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{m} \left[f(\widetilde{\boldsymbol{x}}_{j}, \boldsymbol{\theta}) - f(\widetilde{\boldsymbol{x}}_{j}, \hat{\boldsymbol{\theta}}) \right],$$

where $f(\widetilde{x}_j, \widehat{\theta})$ is exactly the pseudo-labels mentioned earlier.

In this case, we start from theoretical analysis on a toy model and end up with an algorithm works well on real architectures!

To see why Projection Norm handles "hard" distribution shifts, consider the example:

To see why Projection Norm handles "hard" distribution shifts, consider the example:

Training samples:
$$x_i \overset{i.i.d.}{\sim} \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \mathbf{I}_{d_1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \right)$$
; Test samples: $\widetilde{\mathbf{x}}_i \overset{i.i.d.}{\sim} \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \mathbf{I}_{d_1} & \mathbf{0} \\ \mathbf{0} & \sigma^2 \mathbf{I}_{d_2} \end{bmatrix} \right)$.

To see why Projection Norm handles "hard" distribution shifts, consider the example:

Training samples:
$$x_i \overset{i.i.d.}{\sim} \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \mathbf{I}_{d_1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \right)$$
; Test samples: $\widetilde{\mathbf{x}}_j \overset{i.i.d.}{\sim} \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \mathbf{I}_{d_1} & \mathbf{0} \\ \mathbf{0} & \sigma^2 \mathbf{I}_{d_2} \end{bmatrix} \right)$.

Even with enough samples, $\hat{\boldsymbol{\theta}}$ is just the projection of $\boldsymbol{\theta}_{\star}$ to its first d_1 coordinates. Therefore, methods like the confidence score that only depends on the neural network output $f(\widetilde{\boldsymbol{x}}, \hat{\boldsymbol{\theta}}) = \langle \widetilde{\boldsymbol{x}}, \hat{\boldsymbol{\theta}} \rangle$ can't capture any information about σ .

To see why Projection Norm handles "hard" distribution shifts, consider the example:

Training samples:
$$x_i \overset{i.i.d.}{\sim} \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \mathbf{I}_{d_1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \right)$$
; Test samples: $\widetilde{x}_i \overset{i.i.d.}{\sim} \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \mathbf{I}_{d_1} & \mathbf{0} \\ \mathbf{0} & \sigma^2 \mathbf{I}_{d_2} \end{bmatrix} \right)$.

Even with enough samples, $\hat{\theta}$ is just the projection of θ_{\star} to its first d_1 coordinates. Therefore, methods like the confidence score that only depends on the neural network output $f(\widetilde{x}, \hat{\theta}) = \langle \widetilde{x}, \hat{\theta} \rangle$ can't capture any information about σ .

Stress test: adversarial example

Limitations: across dataset prediction

Limitations: easy distribution shift

0.5

ATC

0.4

0.3

0.2

0.1

0.6

0.7

8.0

0.9

-0.9

-0.6

(-1)·AgreeScore

-0.7

-0.8

-0.5

-0.4

-0.3

We propose a quantity named Projection Norm that help predict test error that is almost better than every existing procedures!

We propose a quantity named Projection Norm that help predict test error that is almost better than every existing procedures!

It has three limitations that opens room for improvement:

 Projection Norm requires the test set to be large enough to allow meaningful fine tuning, whereas methods such as confidence score only require one test sample

We propose a quantity named Projection Norm that help predict test error that is almost better than every existing procedures!

It has three limitations that opens room for improvement:

- Projection Norm requires the test set to be large enough to allow meaningful fine tuning, whereas methods such as confidence score only require one test sample
- Projection Norm can't handle easy distribution shift very well.

We propose a quantity named Projection Norm that help predict test error that is almost better than every existing procedures!

It has three limitations that opens room for improvement:

- Projection Norm requires the test set to be large enough to allow meaningful fine tuning, whereas methods such as confidence score only require one test sample
- Projection Norm can't handle easy distribution shift very well.
- Projection Norm can't handle prediction across dataset.

Thanks!