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- Projection Norm outperforms the other methods when test error is large.

Conclusion: Superiority comes from its ability to handle “hard”

distribution shifts. We will latter present a synthetic example that further

illustrates this empirical conclusion.



Experiments: quantitative comparison

Rotation ConfScore Entropy AgreeScore ATC ProjNorm
R? p R? p R? p R? p R? P R? p

ResNetl8 0.839 0953 0.847 0981 0.872 0983 0.556 0.871 0.860 0.983 0.962 0.992
ResNet50 0.784 0950 0.935 0.993 0946 0994 0.739 0961 0.949 0994 0951 0.991
CIFAR10 VGGI1  0.826 0.876 0929 0988 0.927 0.989 0.907 0.989 0931 0989 0.891 0.991

Average 0.816 0926 0.904 0987 0915 0989 0.734 0940 0913 0989 0935 0.991

ResNetl8 0903 0955 0917 0.958 0.879 0938 0939 0969 0934 0.966 0978 0.989
ResNet50 0916 0.963 0932 0986 0.905 0.980 0927 0.985 0947 0989 0.984 0.993
CIFARIO0 VGGI11 0.780 0.945 0.899 0981 0.880 0979 0919 0988 0.935 0986 0953 0.993

Average 0.866 0954 0916 0975 0.888 0.966 0.928 0981 0.939 0980 0972 0.992

Dataset Network

BERT - - 0.516 0.671 0.533 0.734 0318 0.524 0.524 0.699 0.585 0.664
MNLI RoBERTa - - 0493 0.727 0.498 0.734 0499 0.762 0.519 0.734 0.621 0.790
Average - - 0.505 0.699 0.516 0.734 0.409 0.643 0.522 0.717 0.603 0.727

Two metrics considered:
. R?: perform a simple linear regression using the 80 samples and

compute the R? statistics.

- p: Rank correlation between the vector of OOD test errors and the vector
of Projection Norm.



Experiments: a statistical analysis
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Synthetic linear regression: intuition

Question: How does ||(I — F)P0*||2 relates to the Projection Norm

for neural network that is introduced earlier?

I(I— P)PO,|, =116 — PO,

A nonlinear projection

The quantity PO canbe regarded as the minimum norm solution to
min ||YH — Yéllz.
0
Writing the optimization problem differently with f(x;0) = (x,0):
m
min X.0) - (x.0)|,
in ), |/(%,.6) - &

J=1
where f(fj, 0) is exactly the pseudo-labels mentioned earlier.

In this case, we start from theoretical analysis on a toy model and
end up with an algorithm works well on real architectures!
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Limitations: easy distribution shift
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We propose a quantity named Projection Norm that help predict
test error that is almost better than every existing procedures!

It has three limitations that opens room for improvement:

- Projection Norm requires the test set to be large enough to
allow meaningful fine tuning, whereas methods such as
confidence score only require one test sample

- Projection Norm can’t handle easy distribution shift very well.

- Projection Norm can’t handle prediction across dataset.



Thanks!



