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The cafeteria had 23 apples. If they used 20 to make lunch 
and bought 6 more, how many apples do they have?

The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 
23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.
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‣ Process supervision: PRM800K (Lightman et al., 2023)
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On MMLU, GPT-4o scores 88.0% while o1 scores 90.8%.
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‣ Dramatic performance improvement on certain benchmarks

‣ Intriguing CoT patterns: planning, backtracking, self-evaluation, etc.
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‣ Can we scale the test-time compute indefinitely to solve more and more problems?

How large is large-scale? How efficient is data-efficient?

Our large-scale reinforcement learning algorithm teaches 
the model how to think productively using its chain of 
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Test-time compute

Probability of solving 
Riemann hypothesis 



s1
Supervised finetuning on 1,000 chains-of-thoughts delivers o1-preview level capability



Gemini Thinking: source of chains of thoughts



s1K: dataset construcNon

question gemini_thoughts is_qwen32b_correct gemini_length domain

..for martingale.. ..use Doob’s.. No 8257 probability 

..triangle ABC.. ..AB is parallel.. Yes 4320 geometry

…… …… …… …… ……

..potential wall.. ..engien-state.. Yes 5697 physics

Step 1. Question collection and Gemini thoughts generation.
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Experiment Definition AIME 2024 MATH 500
GPQA 

Diamond

1K-random Randomly chosen 1K questions 36.7% 90.6% 52.0%

1K-diverse Random sampling over domains 26.7% 91.2% 54.6%

1K-longest Longest 1K questions 33.3% 90.4% 59.6%

59K-Full All questions 53.3% 92.8% 58.1%

s1K The final s1K 50.0% 93.0% 57.6%

AblaNon studies on s1K
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Budget forcing
‣ s1K training template: Introduce two additional 

special tokens: end of thinking and start of thinking.

<user> 
How many r in raspberry? 
</user> 
<assistant> 
<thinking> 
Let’s analyze the problem...  
... 
Therefore... 
</thinking> 
The final answer is… 
</assistant>

‣ Forcing thinking to be less than 100 tokens.

<thinking> ...first 100 tokens...Without BF
<thinking> ...first 100 tokens...With BF

the 101-th token thinking

</thinking> Final answer:

‣ Forcing thinking to be more than 1000 tokens.

<thinking> ...first 529 tokens...Without BF
<thinking> ...first 529 tokens...With BF

</thinking>...

Wait, ...continues...



Budget forcing on s1 delivers test-compute scaling

Extrapolation: On AIME24, s1 achieves 50% accuracy, budget forcing boosts it to 57%.



Bonus: conNnued scaling beyond chains of thoughts
Combining internal chains of thoughts with external verifier to perform deeper search.
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ScienNfic quesNons spurred o1
‣ How much resource does it take to create o1-like capability?

‣ Can we scale the test-time compute indefinitely to solve more and more problems?

Answer: 26 mins on 16 H100.

100%|IIIIIIIIIIIIIIIIIIIIII| 315/315 [26:46<00:00,  5.10s/it]

Implication: o1-like reasoning ability is already present in the pretrained base model.

• Aggressive budget forcing 
eventually hurts accuracy. 

• At least with BF, we can’t scale 
test-time compute forever.

Implication: Be cautious with test-time scaling claims.

Answer: Undetermined. 
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