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> Verifiers: Tree of thoughts (Yao et al., 2023), Self-critic (2022+)
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> Process supervision: PRM800K (Lightman et al., 2023)
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> On Sep. 12, 2024, OpenAl announced o1-preview

September 12,2024 Product

Introducing OpenAl ol-preview

A new series of reasoning models for solving hard problems. Available now.

» Test-compute scaling: “o1 performance smoothly improves with test-time compute”

o1 AIME accuracy yd o | g1ﬂA7IIiVIE aé&:u raE:y
during training / at test time
100 - / 100

80 - 80 - Tatsu Hashimoto Sep 27th, 2024
3 ‘g a ‘ E i think my measurable definition of
g o S o o ‘ success is being able to replicate
i b P i) * - *W the right side of this plot

20 A

0

train-time compute (log scale)

test-time compute (log scale)

— — ——— B —



Where does the popularity came from?

> Limitations of data scaling: “we have but one internet”

Pre-training as we know it will end

- Better algorithms
rrrrrrrrrrrrrrr




Where do

es the popularity came from?

> Limitations of data scaling: “we have but one internet”

Pre-training as we know it will end

- Better algorithms
rrrrrrrrrrrrrrr

> Dramatic performance improvement on certain benchmarks

GE

_problems. o1 averaged 74% (11.1/15) with a single sample per problem...

/On the 2024 AIME exams, GPT-40 only solved on average 12% (1.8/15) of

N

/

On MMLU, GPT-40 scores 88.0% while 01 scores 90.8%.



Where do

es the popularity came from?

> Limitations of data scaling: “we have but one internet”

Pre-training as we know it will end

- Better algorithms
rrrrrrrrrrrrrrr

> Dramatic performance improvement on certain benchmarks

GE

_problems. o1 averaged 74% (11.1/15) with a single sample per problem...

/On the 2024 AIME exams, GPT-40 only solved on average 12% (1.8/15) of
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/

On MMLU, GPT-40 scores 88.0% while 01 scores 90.8%.

> Intriguing Col patterns: planning, backtracking, self-evaluation, etc.



Scientific questions spurred o1

> How much resource does it take to create o1-like capability?



Scientific questions spurred o1

> How much resource does it take to create o1-like capability?

-
Our large-scale reinforcement learning algorithm teaches

the model how to think productively using its chain of

\thought in a highly data-efficient training process.

=




Scientific questions spurred o1

> How much resource does it take to create o1-like capability?

-
Our large-scale reinforcement learning algorithm teaches

the model how to think productively using its chain of

\thought in a highly data-efficient training process.

=

How large is large-scale? How efficient is data-efficient?



Scientific questions spurred o1

> How much resource does it take to create o1-like capability?

-
Our large-scale reinforcement learning algorithm teaches

the model how to think productively using its chain of

\thought in a highly data-efficient training process.

=

How large is large-scale? How efficient is data-efficient?

> Can we scale the test-time compute indefinitely to solve more and more problems?



Scientific questions spurred o1

> How much resource does it take to create o1-like capability?

4 )
Our large-scale reinforcement learning algorithm teaches

the model how to think productively using its chain of

Kthought in a highly data-efficient training process.

How large is large-scale? How efficient is data-efficient?

> Can we scale the test-time compute indefinitely to solve more and more problems?
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Riemann hypothesis

>~ Test-time compute
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11 Jeff Dean reposted
“~ Zitong Yang &
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OMG, this model got the three gambler's problem right (a problem |
reserved for testing these reasoning models), it's the first model that got
this problem correct, out of o1-preview, o1, r1, QwQ.

Problem:

Consider three gamblers initially having (a, b, c\) dollars. Each trial
consists of choosing two players uniformly at random and having them
flip a fair coin; they transfer $1 in the usual way. Once players are ruined,
they drop out. Let (S 1\) be the number of games required for one player
to be ruined. Let (S_2\) be the number of games required for two players
to be ruined. Find (\mathbb{E}\{S 1\}\) and (\mathbb{E}\{S 2\}\).

It can first consider the well-known case of two gamblers' ruin, where we
consider the martingale X_n"2, and then say X n"2 is essentially
considering X_nY_n where Y.n =N - X _n. From this observation, it
generalizes the 3-player game to the construction of X_n*Y _n*Zn.

This intuition is precisely how | solved this problem myself when |
worked on it for the first time when preparing for the Stanford statistics'
qualifying exam.

Gemini Thinking: source of chains of thoughts

Consider the quantity (X(N-X)\) for two players.
Expected increase is 1.

Consider the quantity (ab+ac+bc\). Expected decrease is
1/3.

Consider the quantity (abc\). Expected decrease is
((a+b+c)/3\).

Let's reconsider the problem setup. The game ends
when one player is ruined for (S_1\). The game ends
when two players are ruined for (S_2\).

The time until one player is ruined is (S_1\).

The time from when one player is ruined until a second
player is ruined is the remaining time for (S_2\).

Consider the process until one player is ruined. At this
point, we have two players remaining.

Suppose player 3 is ruined first. The amounts are (x, y,
O\) where (x+y = N\).

The expected time for one of these to be ruined is (xy\).
We have (\mathbb{E}[S_2]\) = Expected time until two
are ruined.

This involves the cases where (1,2), (1,3), (2,3) are ruined.

Let's use linearity of expectation.

Consider the expected number of games until a specific
pair of players interacts such that one of them gets
ruined.

Let the amounts be a, b, c.
Consider the quantity (f(x, y, z) = xyz\).
Consider the process until one player is ruined.

\mathbb{ENleft[ \sum_{t=0}*{S_1-1} \Delta f_t \right]\)

(O - abc = \mathbb{ENleft[ \sum_{t=0}*{S_1-1} -\frac{1}
{3} (X_t+Y_t+Z_t) \right] = -\frac{N}{3} \mathbb{E}[S_1]\).
This gives (\mathbb{E}[S_1] = \frac{3abcH{N}\).
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Ablation studies on s1K

. " GPQA

Experiment Definition AIME 2024 MATH 500|
Diamond

1K-random Randomly chosen 1K questions 36.7% 90.6% 52.0%

1K-diverse Random sampling over domains 26.7% 91.2% 54.6%

1K-longest Longest 1K questions 33.3% 90.4% 59.6%

59K-Full All questions 53.3% 92.8% 58.1%

s1K The final s1K 50.0% 93.0% 57.6%
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Budget forcing

How many r 1n raspberry?
</user>
<assistant>

> s1K training template: Introduce two additional <thinking>
Let’s analyze the problem...

special tokens: end of thinking and start of thinking. S
ererore. ..

</thinking>
The final answer 1s..
</assistant>

> Forcing thinking to be less than 100 tokens.

Without BF <thinking> ...first 100 tokens... the 10l1-th token thinking
With BF <thinking> ...first 100 tokens... </thinking> Final answer:

> Forcing thinking to be more than 1000 tokens.

Without BF <thinking> ...first 529 tokens... </thinking>...
With BF <thinking> ...first 529 tokens... Wait, ...continues...



Budget forcing on s1 delivers test-compute scaling
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Extrapolation: On AIME24, s1 achieves 50% accuracy, budget forcing boosts it to 57%.



Bonus: continued scaling beyond chains of thoughts

Combining internal chains of thoughts with external verifier to perform deeper search.
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